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Abstract 
As the technology associated to the “Web Services” trend gains significant adoption, the 
need for a corresponding design approach becomes increasingly important. This paper 
introduces a foundational model for designing (composite) services. The innovation of 
this model lies in the identification of four interrelated viewpoints (interface behaviour, 
provider behaviour, choreography, and orchestration) and their formalization from a 
control-flow perspective in terms of Petri nets. By formally capturing the 
interrelationships between these viewpoints, the proposal enables the static verification of 
the consistency of composite services designed in a cooperative and incremental manner. 
A proof-of-concept simulation and verification tool has been developed to test the 
possibilities of the proposed model. 

1. Introduction 
With the increasing use of software applications for the daily conduct of business, the need to 
link software applications of business partners with minimal effort and in short timeframes is 
becoming ever more evident (Bussler 2003). Concomitant with the development of this need 
and greatly motivated by it, Service-oriented Computing (SoC) is emerging as a promising 
paradigm for enabling the flexible interconnection of autonomously developed and operated 
applications within and across organizational boundaries (Alonso et al. 2003).  

SoC is a distributed application integration paradigm in which the functionality of existing 
applications (the services that they provide) is described in a way that facilitates its use in the 
development of applications which integrate this functionality. The resulting integrated 
applications can themselves be exposed as services, leading to networks of interacting 
services known as service compositions or composite services (Casati & Shan 2001, 
Benatallah et al. 2002). At present, SoC is mainly associated with its enabling technology 
(e.g. SOAP, WSDL, WS-Security, and BPEL4WS). This technology enables businesses to 
describe the services that they offer (generally in an XML-based form), to publish these 
descriptions online, to find other services based on their descriptions, and to build 
applications using these services. We argue that, as in other areas of computing, the 
technology for implementing and executing services should be complemented by modelling 
languages, methods, and techniques supporting their design. We call this set of languages, 
methods, and techniques Service-oriented Design (SoD). SoD is needed to aid in the 
communication between application architects as well as between application and enterprise 
architects. It is also needed to verify the conformance of services to their requirements and to 
enable a model-driven approach to service development and composition. 



SoC brings along a number of specific requirements over previous paradigms (e.g. object and 
component-oriented) which unavoidably need to be taken into account by any SoD approach: 

1. High autonomy: As services are expected to be developed by autonomous teams, 
SoD is an inherently collaborative process involving multiple stakeholders from 
different organizational units. This raises the issue that certain organizational units 
may opt not to reveal the internal business logic of their services to others, making it 
difficult (yet indispensable) to ensure global consistency. 

2. Coarse granularity: Services are highly coarse-grained, at least more so than objects 
and components (Szyperski 2003). Often, a service maps directly to a business object 
or activity (e.g. a purchase order or a flight booking service). It follows that the 
design of services (and in particular composite ones) is a complex activity. It involves 
reconciling disparate aspects such as the involved providers and consumers, their 
interfaces, interactions, and collaboration agreements, their internal business 
processes, data, and (legacy) applications. 

3. Process awareness: As services often correspond to business functionality exported 
by an organizational unit, they are likely to be part of long-running interactions 
driven by explicit process models (Aalst 2003). Hence, SoD should take into account 
the business processes as part of which services operate and interact, and in 
particular, the integration (or retrofitting) of services into business processes. This 
effectively places SoD at the crossroads between software and enterprise design. 

In light of these requirements, we argue that before constructing an approach for SoD or 
adapting an existing approach from another area (e.g. defining a UML profile) we need to 
develop an understanding of the fundamental concepts of SoC. We call such a set of concepts 
and their interrelationships a service-oriented design model. The goal of this paper is to 
motivate and propose a SoD model that takes into account the above requirements and 
satisfies the following general principles: 

1. Relevance: They should cover the properties that developers of services and 
compositions of services find relevant. 

2. Automated support: They should provide a basis for reasoning about (composite) 
services, e.g. for simulation and verification purposes.  

3. Technology-independence: They should abstract from specific implementation 
technologies (e.g. WSDL, SOAP and BPEL4WS) and specific platforms. 

To cope with these requirements, the proposed design model adopts a multi-viewpoint 
approach, along the lines of RM-ODP (ITU-T/ISO 1994–1997) and IEEE 1471 (IEEE 
Architecture Working Group 2000). By supporting multiple modelling viewpoints, it is 
possible to break down a service design into smaller more manageable parts which are 
handled by different stakeholders (thereby addressing the “autonomy” and “granularity” 
requirements). In accordance with the “relevance” requirement, the supported viewpoints 
correspond to different aspects of SoC covered within ongoing standardization and 
development efforts, namely service interfaces, providers, choreographies, and 
orchestrations. Importantly, the proposed design model recognizes the need to maintain 
consistency across viewpoints. To this end, all viewpoints and their interrelationships are 
defined in a common process modelling formalism (thereby addressing the “process 
awareness” requirement). Using a formalism for process modelling allows us to abstract from 
specific technologies (technology-independence) and provides a foundation for verifying the 
resulting service designs (automated support). Specifically, we chose Petri nets as a process 
modelling formalism, while acknowledging that there are other alternatives, such as CSP 



(Milner 1989), LOTOS (van Eijk 1989), and pi-calculus (Milner 1999), we chose to use Petri 
nets. 

Also, while acknowledging that an SoD model should be suitable for describing all aspects 
relevant to the development of services, in this paper we focus on the control-flow aspect. 
Informally, this aspect covers the order in which service interactions and internal tasks occur. 
We limit ourselves to this aspect because it is one of the most controversial (see e.g. the 
discussions on the choreography vs. orchestration dichotomy (Pelz 2003)) and because it 
constitutes a foundation upon which other aspects (e.g. the data and transactional aspects) 
can be layered. 

The paper is structured as follows. Section 2 lays the formal background for the proposal in 
the form of a “core model”. Section 3 introduces the four viewpoints recognized by the design 
model and defines them with reference to the core model. Section 4 presents and formalizes a 
number of relations between viewpoints and sketches a method for ensuring the consistency 
of composite service designs using these relations. Finally Section 5 compares the proposal to 
related work and Section 6 presents our conclusions. 

2. Core Model for Service-oriented Design 
This section sets up a (formal) basis for Service-oriented Design. It presents this basis in the 
form of a meta-model that defines the terms that are used in Service-oriented Computing and 
Design, the meaning of these terms and the relations that these terms have with each other. 
The meaning of the terms is refined by a Petri-net based model that defines the dynamic 
aspects of services and compositions of services from a control-flow perspective. We derived 
the meta-model by generalization from the concepts that are supported by existing and 
proposed (web) service description standards, such as WSDL (W3C 2003), WSCI (Arkin et 
al. 2002b), BPEL4WS (BEA Systems et al. 2003), BPML (Arkin et al. 2002a) and BPSS 
(UN/CEFACT & OASIS 2001). This section first explains the static aspects of service-
oriented design with a meta-model. It then explains the dynamic aspects of service-oriented 
design with a Petri net based addition to this meta-model. Finally, it presents an example in 
which the meta-model is used. 

2.1 Static Aspects  

Existing service description languages make their services available by specifying the 
interactions in which they can engage with their environment. The interactions that they 
specify correspond to communication mechanisms that are supported by the service platforms 
for which they are intended. Examples of these communication mechanisms are one-way 
message passing, remote procedure call and transaction. All of the description languages that 
we investigated define the communication mechanisms that they use in terms of the sending 
and receiving of messages. The one-way message passing mechanism is defined as one 
partner sending a message and another partner receiving that message. The remote procedure 
call mechanism is defined as one partner sending a request message, another partner receiving 
that message and optionally sending a response message or one of a set of fault messages and 
the first partner receiving that response or fault. In accordance with what the description 
languages do, we use one-way message passing as our basic mechanism for communication. 
We call sending a message a send event, receiving a message a receive event respectively and 
a combination of a send event by one partner and a receive event by another partner an 
elementary interaction (as opposed to a complex interaction that may also represent a remote 



procedure call or transaction). Since, we only deal with message passing from this point on, 
we simply refer to an elementary interaction as interaction. 

The different description languages define their behaviour in terms of (flow) relations 
between tasks. A task may correspond to a particular pattern of send and receive events. We 
call such tasks communication tasks and the pattern of send and receive events to which they 
correspond a messaging pattern. Alternatively, tasks may represent an internal activity 
performed by a single business partner. We call such tasks internal tasks. The (flow) relations 
between the interactions in which service providers can engage are implicitly defined by the 
flow relations between the different tasks. All description languages predefine particular types 
of communication tasks that predefine particular messaging patterns. For example, 
BPEL4WS defines the ‘invocation’ task type that defines the message pattern in which a send 
event occurs first, after which a choice of receive events is expected, where one receive event 
corresponds to a normal message reception and the other receive events correspond to the 
reception of a fault message (obviously, this defines the messaging pattern that the caller of a 
remote procedure call displays, hence the name invocation task). 

Different description languages vary with respect to the communication and messaging 
patterns that they support and a large variety of communication patterns has been 
documented, for example by Hohpe & Woolf (2004). It is not our goal here to identify all 
communication task types and the patterns to which they correspond, but rather to provide a 
semantic basis for understanding and analyzing service oriented designs. Therefore, we only 
use communication tasks for grouping messaging events and we define the behaviour of a 
business partner by defining the (flow) relations between the interactions rather than between 
the communication tasks. The benefit of this approach is that it can be used to analyze designs 
from all description languages. Moreover, it is possible to define mappings from the existing 
description languages to our design model by ‘exploding’ the tasks that the design model 
supports into the interactions that they represent. The drawback of this approach is that 
behaviours that are modelled with it can not be mapped directly onto a description language. 
Rather, interactions must first be grouped into tasks, such that the messaging patterns 
encapsulated by the tasks match the messaging patterns supported by the description 
language. Also, the control flow between the tasks must match a pattern supported by the 
target description language. The analyses of the control-flow and communication patterns 
supported by BPEL4WS, BPML and WSCI (Wohed et al. 2003) can help with this. 

The final term that we have to define, before presenting our meta-model, is that of role. A 
role is a prescribing behaviour that can be performed any number of times by any service 
provider, concurrently or successively. Every time a service provider fulfils a role, we create 
an instance of that role. Hence, multiple instances of the same role can exist at one moment in 
time and each of these instances represents a service provider that fulfils that role. As an 
example, consider the role of a mortgage broker in a collaboration. Any service provider may 
fulfil that role, including a service provider that also fulfils the role of ‘bank’ in the same 
collaboration. If a service provider fulfils the role of the mortgage broker, it has to act as one 
(i.e. observe the behaviour that the role prescribes). Hence, any number of mortgage brokers 
can exist simultaneously and each of them is represented by a role instance. 

These observations lead to the following meta-model which captures the static aspects of the 
proposed SoD model. 
SE is the set of all send events. 
RE is the set of all receive events. 
E is the set of all events such that SE ⊆ E, RE ⊆ E, SE ∩ RE = ∅ and SE ∪ RE = E. 
I ⊆ SE × RE is the set of (elementary) interactions.  
R is the set of roles. 
RI is the set of role instances. 
IT is the set of tasks that are only available internally to one role or another.  



CT is the set of tasks that represent messaging patterns for interaction with other roles. 
event: E → R, where event(e) = r represents that role r engages in messaging event e. 
communication: CT → R, where communication(ct) = r represents that communication task ct 
is of role r. 
internal: IT → R, where internal(it) = r represents that internal task it is of role r. 
pattern: E -/-> CT, where pattern(e) = ct represents event e is a part of the communication 
pattern represented by communication task ct. 
instance: RI→R, where instance(ri) = r represents that role instance ri is an instance of role r. 

The following constraints must hold on the meta-model: 
(1) ∀se, re1, re2 ∈E: (se, re1) ∈ I ∧ (se, re2) ∈ I ⇒ re1 = re2 and  
(2) ∀se1, se2, re ∈E: (se1, re) ∈ I ∧ (se2, re) ∈ I ⇒ se1 = se2, representing that each send event 
and receive event may be used in an interaction only once, therewith prohibiting broadcast 
and multicast. As we did not find broadcast or multicast in any of the investigated languages 
(Wohed et al. 2003), we consider this a reasonable restriction. 
(3) ∀e∈E, r∈R, ct∈CT:  event(e) = r ∧ pattern(e) = ct ⇒ communication(ct) = r, representing 
that if a role engages in an event that is part of a communication pattern then that 
communication pattern must be part of the same role. 

For illustration purposes, the diagram from figure 1 gives a graphical representation of the 
above meta-model. Each class in the diagram corresponds to a set in the formal model and 
each relation in the diagram corresponds to a relation in the formal model. The partition of the 
set of events into send events and receive events is represented by an inheritance relation and 
the construction of an interaction from a send and a receive event is represented by two 
aggregation relations. 

 

Figure 1. A Graphical Representation of the Meta-Model 

To construct a particular model, the sets and relations in the meta-model are populated and we 
can refer to the classes and relations as if they were sets (e.g. we refer to the roles of a 
particular model as R). To avoid confusion between the sets and relations of different models 
we sometimes subscript them with the model name (e.g. RM designates the roles of a model 
M). 

2.2 Dynamic Aspects 

The above meta-model is complemented by a marked labelled Petri net N capturing the 
dynamic aspects of the proposed SoD model. Specifically, a marked labelled Petri net that 
describes the dynamic aspects of a service-oriented design is a five-tuple:  



(P, T, F, L, M), such that: 
P is the set of places in the net, 
T is the set of transitions in the net, where P ∩ T = ∅,  
F ⊆ (P × T) ∪ (T × P) is the flow relation between places and transitions, 
L: T → E ∪ IT ∪ {τ} is the labelling function that associates each transition with an event, an 
internal task or the ‘silent’ label τ that represents that nothing of interest (or at least no 
internal task or event) is happening, 
M: P → Nat is the marking of the net. M0 is the initial marking M that represents the initial 
situation in a certain behaviour. 

Since the Petri net is defined to be a part of the meta-model, we may refer to the Petri net of a 
particular model M in the same way as we refer to, for example, the roles of that model. 
Hence we may refer to it as: NM. We can also refer to the properties of the Petri net that 
defines the behaviour of a model, by directly subscripting that with the name of the model. 
For example, the places of the Petri net that belongs to model M are PM. We define Nets as 
the set of all possible marked labelled Petri nets. 

To relate the Petri net to the service-oriented design of which it is a part, the labels of the Petri 
net are taken from the set of events and internal tasks of the meta- model defined above. The 
set of possible labels does not include the communication tasks of the meta- model, since the 
behaviour can not be defined on them for reasons explained above. To further relate a service 
oriented design to the Petri net that describes its behaviour, we define that an interaction from 
the model corresponds to a place in the Petri net. This place has a flow relation to it from the 
transition that represents the send event of the interaction and this place has a flow relation 
from it to the transition that represents the receive event of the interaction. Figure 2 
graphically represents an interaction and the send event and receive event that this interaction 
incorporates. 

 

Figure 2. A Petri Net that Represents an Interaction 

Therefore, formally, we say that the set of Petri net places in a model must include the set of 
all interactions in that model: 
(4) I ⊆ P 
Also, we say that if a place represents an interaction, then it may only have one transition in 
its pre-set and one transition in its post-set and this transitions must be labelled with the send 
event and the receive event of the interaction, respectively: 
(5) if there exists an interaction (se, re)∈I then there exist unique transitions t1 and t2, such 
that •(se, re) = {t1} ∧ (se, re)• = {t2} ∧ L(t1) = se ∧ L(t2) = re 

On the basis of this, we define the subnet function (subnet: R → ℘(P ∪ T)). This function 
relates a role to the set of places and transitions that define its behaviour. All transitions must 
be part of a subnet and a place may only not be part of a subnet if it represents an interaction. 
Formally, for all roles r, places p and transitions t: 
(6) if (L(t) ∈ E ∧ event(L(t)) = r) ∨ (L(t) ∈ IT ∧ internal(L(t)) = r) then t ∈ subnet(r), 
representing that a transition t is in the subnet of role r if the label (an event or an internal 
task) of t is of r, as defined in the static part of the meta-model. 
(7) if ∃p’∈ subnet(r): p’ ∈ (•t ∪ t•) then t ∈ subnet(r) representing that a transition t is in the 
subnet of role r if there is a place in its pre-set or post-set that is in the subnet of r. 
(8) if p ∉ I ∧ ∃t’∈ subnet(r): t’∈ (•p ∪ p•) then p ∈ subnet(r) representing that a place p is in 
the subnet of role r if p does not represent an interaction and there is a transition in its pre-set 



or post-set that is in the subnet of r. 
Algorithmically, the subnet of a role r can be constructed by repeatedly adding places and 
transitions that satisfy the above constraints, until a stable situation is reached. 

Finally, each role r is associated with an initial marking M0
r. The initial marking of a role can 

only be defined on places that are in the subnet of the role: M0
r: (P ∩ subnet(r)) → Nat. Each 

time an instance of role r is created, a set of tokens that is identified by the initial marking of 
that role is placed on the Petri net. Therefore, the initial marking of the Petri net of a service-
oriented design equals the union of the initial markings of the roles of that design, where each 
initial marking is multiplied by the number of instances of the corresponding role. Formally: 
(9) for all places p and roles r: if p ∈ subnet(r) then M0(p) = M0

r ⋅ | instances(r) |, representing 
that if a place p is in the subnet of a role r then its initial marking is equal to the initial 
marking that r assigns to it, times the number of instances of r. This constraint works with the 
assumption that each place is associated with at most one role. 

 

Figure 3. An Example of a Service-oriented Design 

2.3 Example 

Figure 3 illustrates our approach. It shows a collaboration between four service providers to 
sell a mortgage to a client (we consider a client a service provider that only uses services of 
other service providers). The figure unifies the static and the dynamic aspects of the design in 
one drawing. It clearly shows the Petri net that represents the dynamic aspects of the design. 
It shows the static aspects of the design as annotations of this Petri net. The roles involved in 
the design are represented as four labels above the model: client, mortgage broker, bank and 
insurance. Each role is suffixed with a number between square brackets that indicates the 
number of instances of that role. Hence, only the bank role has more than one instance. Verify 
that, because there are three instances of the bank role, the initial marking associated with the 
bank role has only one token on the topmost place. In the model there are three tokens on that 
place, because there are three instances of the bank role. An event that is associated with a 
role is represented as a transition below that role’s name. Events are grouped into 
communication tasks by rounded rectangles. The labels of these rounded rectangles represent 
a particular type of communication task, as we will explain later on in this section. An 
interaction is represented as a place that is not below any role name. For reasons of simplicity, 
we have not labelled the send and receive events in the example. Instead, we have annotated 
each interaction with the message that is exchanged and we say that the send event that 



corresponds to the interaction is labelled with ‘send<message>’ and the receive event with 
‘receive<message>’. Also, for reasons of simplicity, we have not modelled that the client, the 
mortgage broker and the bank (may) repeat themselves after they have performed their tasks. 
The model shows that a client sends a message to the mortgage broker. This message contains 
details about the mortgage that the client wants. The mortgage broker forwards the mortgage 
details to a bank. The bank then contacts the insurance company to see if it can get a suitable 
insurance for the mortgage and the insurance company replies with a proposal. Based on this 
proposal, the bank sends a mortgage offer or a rejection back to the mortgage broker. If the 
mortgage broker receives a rejection, it will retry the procedure by forwarding the mortgage 
details to another bank. If it receives an offer, it will forward the offer to the client. The 
mortgage broker can repeat this procedure at most twice (because of the place with three 
tokens that is associated with it). 

Because our approach focuses on the control flow aspects of a service oriented design, we do 
not express constraints related to data exchanged or constraints related to the identity of role 
instances. An example of this latter type of constraint is that the mortgage broker contacts a 
different bank each time that it requests an offer for a particular client. If one wants to be able 
to express constraints on data or identity, one should use coloured Petri nets instead of basic 
Petri nets. One can then use the analysis techniques and tool support associated with coloured 
Petri nets in addition to the analysis techniques for verification of control flow from different 
viewpoints that we propose below. In coloured Petri nets a place has a data type and tokens 
on that place carry a value of the type associated with that place. Transitions may put 
constraints on the value that tokens may have for it to fire and may perform an operation on 
the values of some tokens to put the result of that operation on a target place in the form of a 
new token. For illustration purposes only, figure 4 shows a part of the design from figure 3 
that has been elaborated as a coloured Petri net. In the figure, initially, the transition 
‘sendMortgageDetails’ can fire. When it fires, it takes a token from the place that has the data 
type ‘MortgageDetails’ and assigns its value to the variable ‘m’. In the case shown in the 
figure, this can only be the token with value ‘m1’. Similarly, it takes a token from the place 
that has the data type ‘Bank’ and assigns its value to the variable ‘b’. Let’s say it takes the 
token with value ‘b1’. It then puts a token on the place that has the data type ‘Message’ with 
the value that is formed by combining the values associated with ‘b’ and ‘m’ into a tuple. 
Therefore in our case, it puts a token with value ‘(b1,m1)’ on the place. The transition 
‘recvMortgageDetails’ can only fire if a token from the place that has the data type ‘Bank’ 
can be found that carries the same value as the first component of the tuple that is on the place 
that has the data type ‘Message’. This represents a constraint on the identity of the instance of 
the bank role. Similarly, the constraint on the ‘sendRejection’ transition represents a data 
constraint on the mortgage details that the bank role receives. Intuitively, it specifies that a 
bank sends a rejection if the mortgage details that it received are not acceptable. 

 

Figure 4. An Example of a Service Oriented Design with Data and Identity 



In figure 3, we grouped the send and receive events into communication tasks, by drawing 
rounded rectangles around the send and receive events. In the example, we made each 
communication task correspond to a messaging pattern that is pre-defined in BPEL4WS. 
Figure 5 shows the messaging patterns from BPEL4WS and the task types to which they 
correspond. The task type of a particular communication task is indicated in figure 3 with an 
abbreviation. We claim that the example from figure 3 can be translated into a BPEL4WS 
description, in which each communication task from the figure corresponds to a task in the 
BPEL4WS description. 

 

Figure 5. The Tasks from BPEL4WS and the Messaging Patterns that they Represent 

3. Viewpoints in Service-oriented Design 
From existing approaches and techniques for the development of web services we have 
derived that there are a number of viewpoints from which we can describe the control-flow 
aspect of web services. Specifically, the viewpoints that we identified are: the choreography 
viewpoint, the interface behaviour viewpoint, the provider behaviour viewpoint and the 
orchestration viewpoint. We further explain each viewpoint below by giving a definition for 
it, by explaining the goal that a designer has to construct a design from it and by showing its 
relation to the core model of the previous section. 

3.1 Choreography 

A choreography is a collaboration between some enterprise service providers and their users 
to achieve a certain goal. It describes the tasks that enterprise service providers perform in 
order to achieve that goal and the interactions between enterprise service providers and 
providers and users that are the result of the execution of these tasks. A choreography also 
describes when tasks and interactions may happen, by describing the (flow) relations that 
exist between tasks, between interactions and between tasks and interactions. Since a 
choreography is a collaboration, it only describes tasks that involve communication between 
the parties involved. It does not describe (sub-)tasks that service providers perform internally 
to realize a service that they perform for others, because these tasks are not essential to the 
collaboration (a business partner is not interested in how the other realizes its service, only in 
that it performs its service). Also, since a choreography is goal-focused, it does not focus on a 
particular service provider, by only describing the interactions and tasks in which that service 
provider can participate. Rather, it describes all interactions and tasks between service 
providers and between service providers and service users that contribute to the common 
goal. Figure 3 is an example of a choreography. It can be seen that the choreography from this 
figure can not be described if we focus on a single service provider. 

A choreography covers the perspective of a stakeholder that wants to have an overview of a 
collaboration. A goal for constructing such an overview is to be able to verify whether the 



joint behaviour of some service providers or the behaviour of a particular service provider 
conforms to the originally intended collaboration. Another goal for constructing such an 
overview is to have a standard collaboration in which individual service providers can 
indicate the interactions that they can participate in and the tasks that they can perform. The 
choreography then provides a starting point from which a concrete collaboration can be set 
up. 

From these observations, we derive that a design from the choreography viewpoint must 
respect the following constraint on the generic design model from the previous section: 
(10) IT = ∅, representing that internal tasks are not considered. 

3.2 Interface Behaviour 

An interface behaviour is the behaviour of a particular service provider or service user in its 
communication with a single other service provider or service user to achieve a particular 
goal. Since an interface behaviour only describes the behaviour of a single service provider, it 
consists of only one role instance. Since it is related exclusively to one role instance, it also 
deals with only one role, because a role instance is an instance of exactly one role. An 
interface behaviour only describes send and receive events. It does not describe interactions, 
because these exist between different roles. Since an interface behaviour only describes 
behaviour that is related to communication with other parties, it does not describe internal 
tasks. 

Often, a distinction between provided and required interface behaviours is made. The 
distinction between these different interfaces is based on the types of communication tasks 
that an interface is allowed to use and the way in which these communication tasks can be 
related. A provided interface behaviour can only use communication task types in such a way 
that a receive event always occurs first, after which an optional choice of send events may 
occur. The idea is that the receive event corresponds to the request for a certain business 
function to be performed and the send events correspond to the possible responses that may 
be the result of performing this business function. In terms of the task types supported by 
BPEL4WS that are shown in figure 5, a provided interface behaviour must be composed of 
receive and reply tasks, where the replies are always coupled to a receive (BPEL4WS calls 
this correlation of replies to receives). A provided interface behaviour is often called a 
service. A required interface behaviour can only use communication task types in such a way 
that a send event always occurs first, after which an optional choice of receive events may 
occur. The idea is that a required interface works as the counterpart of the provided interface 
and that therefore the send event corresponds to the request for a certain business function to 
be performed and the receive events correspond to the possible responses that may be the 
result of performing this business function. In terms of the task types supported by BPEL4WS 
that are shown in figure 5, a required interface behaviour must be composed of asynchronous 
or synchronous invoke tasks. 

 

Figure 6. Two Examples of Interface Behaviour. 



Figure 6 shows two examples of interface behaviour. The interface behaviours have been 
identified by drawing a rounded rectangle around them. The first example shows the interface 
behaviour of a mortgage broker as it communicates with its clients and the second example 
shows the interface behaviour of the mortgage broker as it communicates with banks. 

An interface behaviour covers the perspective of the service provider that provides a web 
service or of the service provider that wants to use a web service that is provided by another 
service provider. The goal of specifying an interface behaviour is to make clear what an 
enterprise service provider can do for a particular business partner or expects of a particular 
business partner. 

From these observations, we derive that a design from the interface behaviour viewpoint must 
respect constraint (10) specified in the choreography viewpoint, as well as the following 
constraints: 
(11) |RI| = 1, representing that an interface behaviour deals with only one role instance (and 
therefore with only one role). 
(12) I = ∅, representing that interactions are not considered in the interface behaviour 
viewpoint, but only send and receive events. 

3.3 Provider Behaviour 

A provider behaviour is the behaviour of a particular enterprise service provider or enterprise 
service user in its communication with all its business partners. The provider behaviour of an 
enterprise service provider is similar to the interface behaviours of a service provider. 
However, it is not limited to the collaboration with a single business partner, but rather 
describes the collaborations with all business partners. The same description techniques that 
apply to interface behaviour description therefore also apply to provider behaviour 
description. Hence, a provider behaviour corresponds to the events and communication tasks 
that are specified in the interface behaviours of a particular service provider, the relations 
between the events and tasks within individual interface behaviours and the relations between 
events and tasks from different interface behaviours. 

 

Figure 7. An Example of a Provider Behaviour. 

Figure 7 shows an example of a provider behaviour. The example shows the provider 
behaviour of a mortgage broker. The example clearly shows that the provider behaviour of the 
mortgage broker was derived from the interface behaviours of the mortgage broker from 
figure 6 by adding a place and three flow relations. Adding places and flow relations to a 
design adds constraints on when events can happen. Hence we refer to this method of 
constructing provider behaviour as constraint oriented structuring (Quartel et al. 1997). The 
benefit of constraint oriented structuring is that it clearly separates the relations between 
events within a single interface from the relations between events in separate interfaces. In 
that way, the original interface behaviours remain in tact and clearly recognizable. We will 
further elaborate on this in the next section. 



A provider behaviour description covers the perspective of the enterprise service provider that 
fulfils that provider behaviour. The reason for constructing a service description can be, for 
example, for the enterprise service provider to know exactly what it has to implement. This 
information is useful when the service provider wants to change the implementation, while 
keeping the implemented provider behaviour intact, or when the provider behaviour was 
derived from a standard choreography that, by definition, does not prescribe how the service 
provider has to implement the provider behaviour. 

The provider behaviour viewpoint has the same conceptual model as the interface behaviour 
viewpoint. Therefore, constraints (10) through to (12) from the choreography and the 
interface behaviour viewpoints apply. From this, we derive that the difference between 
interface behaviour and provider behaviour is purely a methodological one. 

3.4 Orchestration 

An orchestration is the behaviour that a service provider performs internally to realize a 
service that it provides. For this purpose, the service provider may communicate with other 
business partners at its required interfaces. In addition to the messaging events and the 
communication tasks that model the collaborations with other parties, an orchestration 
describes tasks that a service provider performs internally. Current description languages for 
orchestration limit the internal actions to data transformations, such as string and integer 
operations and type conversions. The reason for limiting the allowed internal actions is that 
orchestrations are intended to be executed by an orchestration engine and that, therefore, the 
internal tasks must be supported by such an engine. Because an orchestration is intended to be 
executed by an orchestration engine, it is also called an executable process. 

Figure 8 shows an example of an orchestration. The orchestration introduces an internal task 
to the provider behaviour of the mortgage broker from figure 7. In the internal task, the risk of 
a mortgage is calculated, based on the details that are provided about the mortgage. 

 

Figure 8. An Example of an orchestration. 

An orchestration covers the perspective of the stakeholders that implement a provider 
behaviour in an orchestration engine. The goal for constructing an orchestration is to realize a 
web service. 

The orchestration viewpoint has the same conceptual model as a the interface behaviour and 
provider behaviour viewpoint, except that constraint (10), which states that there are no 
internal tasks, does not apply. 



4. Relations between the Viewpoints 
In this section we discuss the relationships between the viewpoints that are identified in the 
previous section, both informally and formally. Subsection 4.1 gives an informal overview of 
the relations between the viewpoints. The subsequent subsections describe the relations 
between each pair of viewpoints more precisely in terms of relational operators and the 
properties that these operators exhibit. 

4.1 Overview of the Relations between Viewpoints 

Figure 9 shows an example that illustrates the relations between the different viewpoints. 

 

Figure 9. Relations between Viewpoints 

The figure shows two choreographies. The choreographies show the interactions that occur 
between participating roles (and role instances). The choreographies imply the existence of 
certain interfaces. These interfaces are represented by rounded rectangles. Each interface 
groups the send and/or receive events that relate to the interactions of a role with a single 
other role. 

The figure shows a single provider behaviour that engages in role B of choreography 1 and 
role D of choreography 2. Which roles a provider behaviour engages in is a design choice. 
Because of the chosen relation to the choreographies, the provider behaviour from the 
example includes the events of roles B and D. The provider behaviour can be partitioned into 
a number of interfaces. Although this partition is a design decision, the partition shown in the 
figure is the most logical choice, because this is the partition that is implied by the 
choreographies from which the provider behaviour was created. 

The provider behaviour from the figure is realized by two orchestrations. We did not include 
internal tasks in the orchestrations, but normally orchestrations would include internal tasks. 
The orchestrations of the service provider partition the events from the provider behaviour. 
Although the partition into two orchestrations corresponds to the two choreographies in which 
the service provider engages, this is merely a design choice. One could easily envision a 
single orchestration that realizes the provider behaviour of the service provider. 

In this section, we limit ourselves to these viewpoint relations. However, other relations can 
easily be envisioned (e.g. between an interface and a choreography). We claim that these 
relations can be expressed as transitive relations with the operators that are defined below. 



4.2 Relating Provider behaviours to Choreographies 

A choreography provides a point of verification, describing interaction patterns that service 
providers must conform to if they want to do business. A choreography can be used as a point 
of verification in two ways. We can use a choreography as a starting point and verify whether 
the behaviour of a particular service provider (a particular provider behaviour) conforms to 
the behaviour prescribed by the choreography. Also, we can derive the joint behaviour, or 
choreography, of a number of service providers (a set of provider behaviours) and verify that 
it makes sense. We do not describe below what we mean by a choreography that ‘makes 
sense’, but we do show how a choreography can be derived from a set of provider behaviours. 
This derived choreography can then be simulated and analyzed for deadlocks and other 
properties, depending on the designer’s wishes, to verify that it makes sense. 

4.2.1 Verify the Behaviour of a Single Service Provider 

A single service provider can play a number of roles in a choreography. Hence, to verify the 
behaviour of a particular service provider, we focus on the behaviour of the roles that the 
service provider plays in a choreography. Moreover, we focus on events of interactions that 
these roles engage in with other roles. We call these events the events that are at the service 
boundary of the roles that the service provider plays. We focus on the events that are at the 
service boundary, because events that are inside the service boundary are invisible to the 
external observer (i.e. other roles). Therefore, the behaviour of a service provider conforms to 
the behaviour prescribed by a choreography, if it at least displays the behaviour at the service 
boundary. We can use the following approach to determine the behaviour at the service 
boundary of a set of roles rs in the context of a choreography C.  

First, we determine the behaviour of the set of roles rs ⊆ RC that the service provider plays in 
the choreography. To do this we use the restriction operator. The restriction operator,  
\: Nets × ℘T → Nets delivers for a Petri net P and a set of transitions X, the Petri net that 
consists of these transitions, the places that have a pre-set and a post-set that is completely 
constituted of these transitions and the flow relations, the labels and markings that are defined 
on these places and transitions. Formally: P \ X is the Petri net for which: 
PP\X = {p | •p ⊆ X ∧ p• ⊆ X} 
TP\X = T ∩ X 
FP\X = {(x, y)| (x, y) ∈ F  ∧ x ∈ (PP\X ∪ TP\X) ∧ y ∈ (PP\X ∪ TP\X)} 
LP\X = {(t, l)| (t, l) ∈ L  ∧ t ∈ TP\X } 
MP\X = {(p, m)| (p, m) ∈ M  ∧ p ∈ PP\X } 
For a model of a choreography C, this operator can be used to restrict the behaviour NC of that 
choreography to the behaviour of a particular role r ∈ RC, using the formula:  
NC \ (subnet(r) ∩ TC), or alternatively to the behaviour of a set of roles rs ⊆ RC, using the 
formula: NC \ ( ∪(map subnet rs) ∩ TC). This formula uses the map operator that applies a 
function to all elements of a set and delivers the resulting set. We define the function  
map: (X → Y) × ℘X → ℘Y, such that: 
map fn xs = {fn(x)| x ∈ xs} 

As an example, consider the choreography C from figure 3 and suppose that we want to 
restrict the choreography to the bank and insurance company roles {Bank, Insurance}. The 
transitions that the bank engages in are: subnet(Bank) ∩ TC. If we identify these transitions by 
their labels, we get the set of transitions: {recvMortgageDetails, sendRiskDetails, 
recvInsuranceDetails, sendRejection, sendOffer}. Similarly, the transitions that the insurance 
company engages in, identified by their labels, are: {recvRiskDetails, sendInsuranceDetails}. 
If we restrict the Petri net NC of the choreography to the Petri net that contains only these 



transitions NC \ {recvMortgageDetails, sendRiskDetails, recvInsuranceDetails, sendRejection, 
sendOffer, recvRiskDetails, sendInsuranceDetails}, we get the diagram from figure 10. 

 

Figure 10. A Choreography Restricted to the Bank and Insurance Roles 

A choreography can contain multiple instances of a particular role and the formula above 
returns all instances of that role. However, because we only want to compare the behaviour of 
a single service provider, we only want one instance of each role. We can obtain a single 
instance of a role r, by setting the marking of that role its initial marking: M0

r. For this, we use 
the operator mark: Ms × Nets → Nets, which delivers for a Petri net P and a marking M the 
Petri net Q in which the marking of P has been replaced by M (where Ms represents all 
possible markings). Formally: 
mark M P = (PP, TP, FP, LP, M). 
For a role r, the behaviour of a single instance of that role can then be obtained by the 
formula: 
mark M0

r (NC \ (subnet(r) ∩ TC)). For a set of roles rs, the behaviour of a single instance of 
each of these roles can be obtained by the formula: 
mark (∪r∈rs M0

r) (NC \ ( ∪(map subnet rs) ∩ TC)), where ∪r∈rs M0
r delivers the marking that is 

the union of all initial markings of the roles from rs. 

As an example, consider the (restricted) choreography from figure 10 in which there are three 
instances of the role bank and one of the role insurance. To derive the model in which there is 
only one instance of each role, we have to replace the marking of the net by the initial 
markings of the roles. The initial marking of the role bank only had a single token on the 
topmost place and the initial marking of the role insurance is the same as the marking that is 
shown. Hence, the marking from figure 11 is the marking in which there is one instance of the 
bank role and the insurance role. 

Second, we determine the events inside the service boundary of the set of roles rs ⊆ RC that 
the service provider plays. To do this, we use the IN operator. The operator  
INM: ℘RM → ℘EM, delivers for a given set of roles rs all events that are inside the service 
boundary of the specified roles in the context of model M. These are the events that relate to 
interactions these roles perform jointly:  
INM(rs) = ∪{{se, re}| (se, re) ∈ IM ∧ ∃ r1, r2 ∈ rs: (se, r1) ∈ eventM ∧ (re, r2) ∈ eventM} 

Finally, we abstract from the events inside the service boundary of the roles rs ⊆ RC that the 
service provider plays, thereby yielding the service boundary behaviour of these roles. To do 
this, we use the abstraction operator. The abstraction operator σ: Nets × ℘L → Nets, where L 
is the set of all possible labels, delivers for a given Petri net P and a given set of labels A the 



Petri net in which all transitions with a label from A are labelled with the silent label τ. 
σ(P, A) = {PP , TP , FP , {(t, l) | (LP(t) ∈ A ∧ l = τ) ∨ (LP(t) ∉ A ∧ l = LP(t))}, MP} 

As an example, consider the choreography C from figure 10. The send and receive events of 
interactions between the bank and the insurance role from this choreography are:  
INC({Bank, Insurance}) = {sendRiskDetails, recvRiskDetails, sendInsuranceDetails, 
recvInsuranceDetails}. Hence, to derive the service boundary behaviour of the bank and the 
insurance role, we have to abstract from these events. To do this, we use the formula:  
σ(C, INC({Bank, Insurance})). This formula leads to the choreography design from figure 11. 
The figure clearly shows that the interactions between the bank and insurance role are silent. 

 

Figure 11. A Restricted Choreography with Silent Transitions 

Hence, in the context of a choreography C, the service boundary behaviour of a set of roles rs 
⊆ RC is represented by the Petri net: 
σ(mark (∪r∈rs M0

r) (NC \ ( ∪(map subnet rs) ∩ TC)), INC(rs)) 

For a provider behaviour P to display at least the same behaviour as a choreography C, P 
must at least be able to engage in the same events that C can engage in. We say that P must be 
able to engage in all the same events in which C can engage, because a choreography defines 
a standard. Therefore, although P may be able to perform its work without engaging in some 
events, the choreography defines it necessary that P does. As an example, consider that a 
choreography specifies that a loan agency must inform a regulative authority of all loans that 
it provides. It does this by specifying that the ‘loan agency’ role sends ‘loan information’ to 
the ‘regulative authority’ role. Obviously a service provider that wants to play the ‘loan 
agency’ role must then also send the ‘loan information’. 

Figure 9 illustrated that a service provider can be involved in more than one choreography. 
Therefore, a single choreography may not cover all events of a service provider. Instead, that 
service provider may also engage in events that are covered by other choreographies. Hence, 
to compare a service provider to a single choreography, we must abstract from the events that 
are covered by other choreographies. We do this by abstracting from such events, using the 
abstraction operator that we introduced above. In addition to this, service providers may 
specify events that are not used in any choreography, but that may be used in the future or 
may have been used in the past. These events must be removed from the service provider, 
before comparing it to any choreography. Removing events differs from abstracting from 
events, because abstracted events still happen but are invisible to the observer, while removed 
events do not happen. Hence, the removal operator ρ: Nets × ℘L → Nets, delivers for a given 
Petri net P and a given set of labels A the Petri net in which all transitions with a label from A 
are removed, as well as the flow relations and labels that contain these transitions. 



Formally: ρ(P, A) is the Petri net for which: 
Pρ(P, A) = PP  
Tρ(P, A) = TP – {t | LP(t) ∈ A} 
Fρ(P, A) = FP ∩ (Tρ(P, A) × Pρ(P, A) ∪ Pρ(P, A) × Tρ(P, A)) 
Lρ(P, A) = LP ∩ (Tρ(P, A) × L) 
Mρ(P, A) = MP 

Hence, to compare provider behaviour P to a choreography C, we have to abstract from 
events in P that occur in the context of another choreography and remove events from P that 
do not occur at all. Given a set of events A ⊆ EP – EC that occur in another choreography and 
a set of events B ⊆ EP – EC that do not occur, such that A ∩ B = ∅, the behaviour that we 
want to compare to the choreography is: ρ(σ(NP, A), B) 

This behaviour must be equal to the service boundary behaviour that we established in the 
first step. We use the notion of branching bi-similarity (Glabbeek & Weijland 1996) between 
Petri nets to verify whether two behaviours are equal. Informally, a Petri net P is branching 
bi-similar to a Petri net Q (notation: P ~ Q) if, at any time, a transition in P can be mirrored 
by a transition in Q and vice versa, while possibly some silent transitions occur before and 
after the mirrored transition. 

Summarizing, we say that a provider behaviour, must be equal to the service boundary 
behaviour of the roles that the provider fulfils in a choreography, after: (i) we abstracted from 
the events that occur in the context of another choreography; and (ii) we removed the events 
that do not occur, while we only consider a single instance of the roles that the provider 
fulfils. 

Formally, we define this relation between a choreography C and a provider behaviour P that 
plays the roles rs ⊆ RC of the choreography and that engages in other choreographies to 
perform the events from A ⊆ EP – EC and that does not perform the events from B ⊆ EP – EC, 
such that A ∩ B = ∅, as: 
σ(mark (∪r∈rs M0

r) (NC \ ( ∪(map subnet rs) ∩ TC)), INC(rs)) ~ ρ(σ(NP, A), B) 

As an example, consider the provider behaviour from figure 12 and verify that this behaviour 
is branching bi-similar to the restricted choreography from figure 11, in which the interactions 
between the bank and insurance company are abstracted from. 

 

Figure 12. A Provider Behaviour 

4.2.2 Derive the Choreography of a Number of Service Providers 

We can derive a choreography of a number of service providers, by joining their individual 
provider behaviours. To join the provider behaviours of service providers, we must first 
determine the set of interactions IC in which they engage together and the send and receive 
events that these interactions consist of. We then add these interactions to the joint behaviour 
of these service providers. The choreography C is then formed as the union of each of the 
concepts and relations of the provider behaviours P1, P2, Pn. For example,  



RC = RP1 ∪ RP2 ∪ … ∪ RPn, EC = EP1 ∪ EP2 ∪ … ∪ EPn, eventC = eventP1 ∪ eventP2 ∪ … ∪ 
eventPn. The interactions of the choreography are formed by the set of interactions that were 
determined by the designer:  
IC = IC. Verify that there can be two or more service providers that fulfil the same role, which 
leads to multiple different instances of that role. This situation can be catered for under the 
assumption that when two service providers SP1 and SP2 fulfil the same role, their respective 
designs must be equal and their role instances must be different: RISP1 ∩ RISP1 = ∅. 

The behaviour of the choreography is the Petri net that is the join of the Petri nets of the 
provider behaviours. Again we assume that, if two service providers fulfil the same role, their 
Petri nets are structurally equivalent (structurally equivalent, meaning that they are equivalent 
under the equals sign (=) rather than the notion of branching bi-similarity). The Petri net that 
represents the joint behaviour of the service providers consists of the original Petri nets that 
represent the behaviours of the service providers, the places that correspond to the 
interactions that these service providers have with each other and the flow relations that relate 
the interactions to the send and receive events that constitute them. If two service providers 
perform the same role, we assume that their Petri nets are structurally equivalent. Hence, their 
places, transitions, flow relations and labelling functions are duplicates of which we only need 
one. However, because they represent two distinct instances of the same role, their labelling 
function should be duplicated. 

Formally, we define the join operator on two Petri nets ⊕: Nets × Nets × I → Nets, where I is 
the set of all possible interactions, such that for Petri nets N and M and the set of interactions 
IC, the joint behaviour N ⊕IC M is the Petri net where: 
PN⊕ICM = PN ∪ PM ∪ IC 
TN⊕ICM = TN ∪ TM 
FN⊕ICM = FN ∪ FM ∪ {(t, (se, re)) | (se, re) ∈ IC ∧ t ∈ TN⊕ICM ∧ L(t) = se} ∪  
                                  {((se, re), t) | (se, re) ∈ IC ∧ t ∈ TN⊕ICM ∧ L(t) = re} 
LN⊕ICM = LN ∪ LM 
MN⊕ICM = MN ⊕ MM ∪ (IC × {0}) 
Where ⊕: M × M → M is the function that duplicates markings if necessary. It does this by 
adding up the number of tokens for places that occur in both markings. Formally: 
(p, i + j)∈ M1 ⊕ M2 if and only if (p, i) ∈ M1 and (p, j) ∈ M2 

(p, i)∈ M1 ⊕ M2 if and only if (p, i) ∈ M1 and (p, j) ∉ M2 

(p, j)∈ M1 ⊕ M2 if and only if (p, i) ∉ M1 and (p, j) ∈ M2 

Without proof, we claim that the join operator is commutative and associative and that 
therefore, the Petri net that specifies the behaviour of the choreography can be defined as 
follows: 
NC = NP1 ⊕IC NP2 ⊕IC … ⊕IC NPn 

As in section 4.2.1 the service providers must at least engage in the same tasks and 
interactions as the choreography, but may implement other tasks and interactions as well. 
Therefore, after constructing the joint behaviour of the service providers, we may remove 
events in which the service providers do not engage and we can abstract from events in which 
the service providers engage, but not in the context of this choreography. To do this, we can 
use the operators that are defined for this purpose in section 4.2.1. 

4.3 Relating Interface Behaviours to Provider Behaviours 

Looking at the goals with which designs are constructed from the provider behaviour 
viewpoint and the interface behaviour viewpoint, we can say that the events from an interface 
behaviour are a subset of those from a provider behaviour. While a provider behaviour 



describes all events that a service provider engages in with its environment, an interface 
behaviour focuses on the events that a service provider engages in with particular business 
partners, to achieve a certain goal. 

Although it would be logical to assume that the business partner and goal that an interface 
behaviour deals with are the same as the ones in a choreography, this is not necessarily the 
case. The reason for this is that an interface behaviour may have been designed independently 
of a particular choreography and therefore with a different goal and different business 
partners in mind. However, if an interface has been designed specifically to support a 
choreography, it is best that its goal matches the goal of the choreography and the business 
partners that it deals with are identified by a particular role. 

A provider behaviour can be completely partitioned into a set of interface behaviours. By this 
we mean that the interface behaviours together must engage exactly in the events of the 
provider behaviour and no two interface behaviours may engage in the same event. An 
interface behaviour can not define any events that are not also in the provider behaviour of the 
service provider to which it belongs, because by definition the provider behaviour of the 
service provider must completely specify the externally observable behaviour of that service 
provider. If a provider behaviour does not include certain events that are defined in one of the 
provider’s interface behaviours, then this definition is violated. Also, the provider behaviour 
can not describe any events that do not occur in one of the interface behaviours of the service 
provider. The reason for this lies in that interactions with business partners always occur at 
particular locations (i.e. endpoints). In a design we represent the behaviour at a particular 
location with an interface. Therefore, each interaction and task must be assigned to an 
interface. Hence, formally, if a provider behaviour P is partitioned into the interface 
behaviours I1, I2, …, In then the set of events of the provider behaviour equals the union of the 
sets of events of the interfaces and the interfaces must not have any events in common: 
EP = EI 1 ∪ EI 2 ∪ … ∪ EI n 
1 ≤ i, j ≤ n ∧ i ≠ j ⇒ EI i ∩ EI j = ∅ 

Hence, an interface behaviour must be equal to a provider behaviour after abstracting from 
the tasks that do not occur in the interface behaviour. Formally, for an interface behaviour I 
and a provider behaviour P, we denote this as: 
NI ~ σ(NP, EP – EI) 

As an example, we can see that the two interface behaviours from figure 6 conform to the 
provider behaviour from figure 7. 

The partitioning of a provider behaviour into several interface behaviours is lossy, because 
the joint behaviour of the interface behaviours allows for more freedom than the provider 
behaviour from which it originates. This means that certain flow relations, silent transitions 
and places, are lost in the partition. The reason for the loss of relations in the partition of a 
provider behaviour is that each interface behaviour only captures the relations between its 
own events. Therefore, the relations between events from different interface behaviours are 
lost when partitioning the provider behaviour. This can be seen in the provider behaviour 
from figure 6, in which the interfaces of the service provider are indicated by rounded 
rectangles. In this figure it can be seen that there are three flow relations and one place that 
are outside these interfaces and that, therefore, are lost in the partition from figure 7. Hence, 
the provider behaviour is equal to the union of the interface behaviours and the behaviour that 
describes the relations between different interface behaviours.  

Formally, for a provider behaviour P that is partitioned into the interface behaviours I1, I2, …, 
In and the Petri net NI that describes the flow relations between events from different interface 
behaviours, we define: 
NP = NI 1 ∪ NI 2 ∪ … ∪ NI n ∪ NI 



As an example, figure 13 shows the Petri net that represents the relations between the events 
of the interfaces from figure 7. The transitions from figure 13 are the transitions from figure 7 
that have the same label. The lower place from figure 13 is the place from figure 7 that has 
{receiveOffer} as its pre-set. The union of the interface behaviours from figure 6 with the 
inter-interface behaviour from figure 13 yields the provider behaviour from figure 7. Note 
that the Petri net from figure 13 can not be used for anything but to relate the interfaces of the 
provider behaviour, because it does not do anything itself. This is because this Petri net only 
represents additional constraints that further restrict the behaviour that is constituted by the 
joint interface behaviours. 

 

Figure 13. Inter-Interface Constraints 

The union operator on Petri nets ∪: Nets × Nets → Nets is trivially defined as the union of the 
individual properties of the Petri nets. NI must not define any new events, but only relate 
events that are defined in the interfaces: 
map LNI TNI ⊆ EI 1 ∪ EI 2 ∪ … ∪ EI n ∪ {τ} 

4.4 Relating an Orchestration to Interface Behaviours 

An orchestration is intended to realize part of the provider behaviour of a service provider. 
More specifically, it specifies what a service provider does internally to realize the service 
that it provides to a particular business partner. The provided service is represented by the 
interface meant for that business partner. The realization includes internal tasks that must be 
performed by the service provider and events that are related to interactions that the service 
provider may have with other business partners in order to realize the communication pattern. 

Hence, the behaviour of the orchestration must be exactly equal to the interface behaviour that 
represents the service that it realizes, after abstracting from the internal tasks and events that 
are outside that interface behaviour. Formally, for an orchestration O and an interface 
behaviour SI that represents the service that the orchestration implements: 
NSI ~ σ(NO, ITO ∪ (EO – ESI)) 

An orchestration may engage in interactions on other interfaces to realize a service. These 
interfaces represent services that the service provider requires of other service providers. The 
behaviour of the choreography must be equivalent to the behaviour at each of these interfaces, 
after abstracting from the events in which the service provider does not engage at that 
particular interface. Formally, for an orchestration O and an interface behaviour RI that 
represents a service that the orchestration uses: 
NRI ~ σ(NO, ITO ∪ (EO – ERI)) 

5. Related Work 
In this section, we provide an overview of previous work in two areas related to our proposal, 
namely: (i) languages for modelling various aspects of services and in particular 
choreographies and orchestrations; and (ii) definition of relations between service modelling 
viewpoints. 



5.1 Service Modelling Languages 

A number of languages for specifying service choreographies (also called conversations by 
some authors1) have been proposed in the literature. Benatallah et al. (2003) formulate some 
requirements for service conversation modelling languages, a service conversation in their 
terminology being a two-party choreography involving a requester and a provider. The 
requirements include genericity, automated support, and relevance. The authors argue that 
state machines satisfy these requirements and sketch an architecture of a service conversation 
controller capable of monitoring messages exchanged between a requester and provider in 
order to determine whether they conform to a conversation. 

The idea of using state machines for specifying service interactions is also advocated by 
Bultan et al. (2003) and Hull et al. (2003), who study the formal expressiveness of service 
choreography (or conversation) specification languages based on communicating state 
machines (and more specifically Mealy machines). Expressiveness is defined in terms of sets 
of recognised message traces. The authors put forward sets of message traces which cannot be 
recognised by isolated state machines while they can be recognised by collections thereof. 
Frølund & Govindarajan (2003) also adopt a trace-oriented approach to service modelling by 
proposing a language for specifying (two-party) choreographies based on typed traces: regular 
expressions without iteration in which the tokens correspond to typed and directed message 
exchanges.  

A number of alternative languages for service orchestration modelling have been put forward 
by several authors. Benatallah et al. (2003) for example propose a system for model-driven 
service orchestration called SELF-SERV, in which service orchestrations are modelled using 
statecharts. Casati et al (2001) on the other hand promote the use of flow charts for this 
purpose, while DAML-S (2002) advocates the use of preconditions and postconditions 
expressed in a logic-based language for specifying service processes (which correspond to 
orchestrations) as well as service interfaces (which correspond to interface behaviours). 

Our contribution differs from the work cited above in two ways. First, we distinguish four 
different viewpoints, whereas the above efforts deal with either one or two of these 
viewpoints at a time. More importantly, we recognise and address the need to formally 
capture relationships between viewpoints as a step to enable incremental and collaborative 
service design and verify global design consistency. In the next sub-section, we look at other 
related work in which the relationship between viewpoints is considered. 

5.2 Relating Service Modelling Viewpoints 

The choreography vs. orchestration dichotomy is informally discussed and illustrated by Peltz 
(2003) who analyses the overlap and complementarity of three proposed web service 
composition standards, namely WSCI, BPML, and BPEL4WS, with respect to this 
dichotomy. Interestingly, Peltz does not make the distinction between choreographies, 
interface behaviours, and provider behaviours. Instead, Peltz considers that interface 
behaviour (e.g. a BPEL4WS abstract process) is the same concept as choreography. In this 
paper, we have shown that by making this distinction, it is possible to enable an incremental 
approach to service consistency verification, wherein interface and provider behaviours 
(defined independently by the service providers) are validated against choreographies 
(defined by agreement between multiple providers or by standardisation committees). 

                                                      
1 The term service conversation seems to originate from the area of agent systems, where a number of 
conversation protocols and languages have been developed – see e.g. standardisation work by the FIPA 
organisation (www.fipa.org). We prefer the term choreography mainly to oppose it to orchestration. 



Mecella et al. (2001) advocate the use of Petri nets for specifying service choreographies 
(which the authors call orchestration nets). These choreographies are intended to be enacted 
by a number of partners cooperating through so-called “cooperative gateways”. On the basis 
of this approach, the authors define a set of formal conditions to verify whether a service can 
be replaced by another (substitutability) in a given service choreography. This is similar to 
checking whether a given provider behaviour conforms to a choreography in our approach. 

Wombacher & Malheko (2002) address the issue of comparing required behavioural 
interfaces with provided behavioural interfaces for service matchmaking. The authors assume 
that interface behaviours are specified as statecharts. Their approach proceeds by computing 
the “perspective” of the provider on the requestor’s interface (using a “mirroring” operator on 
the underlying statechart), and then determining whether this “perspective” is a subset of the 
provided interface. This differs from our approach in which the relation between the interface 
required by a given partner and the interface provided by another is made with respect to a 
given choreography. 

The orchestration and interface behaviour modelling viewpoints have also been investigated 
in the areas of B2B Integration (Bussler 2003) and inter-organizational workflow (Grefen et 
al. 2000, Aalst & Weske 2001, Aalst  2002). In these areas, a separation is often made 
between the notions of private process (corresponding to orchestration in our approach) and 
public process (corresponding to interface behaviour, provider behaviour, and choreography 
in our approach). Especially related to our work is the Public-to-Private (P2P) approach of 
Aalst & Weske in which choreographies (called public workflows) and orchestrations (private 
workflows) are modelled using WF-Nets: a class of labelled Petri nets. These viewpoints are 
then related through formal notions of workflow inheritance and the soundness of the overall 
inter-organisational workflow is ensured by checking the consistency between the 
orchestrations and the subset of the choreography that they “implement”. Our work can be 
seen as an extension of that of Aalst & Weske, in which the notions of interface behaviour 
and provider behaviour are explicitly introduced to complement those of choreography and 
orchestration. Introducing these intermediate notions enables a more incremental approach to 
service-oriented design. 

6. Conclusion 
The paper has introduced a core model for service-oriented design upon which different 
design viewpoints can be defined. Four such viewpoints have been identified and formalised, 
as have a number of relations between these viewpoints. These relations can be used to 
perform (global) consistency checking of multi-viewpoint service designs thereby providing a 
formal foundation for incremental and collaborative approaches to service-oriented design. 
Specifically, choreographies designed by agreement between multiple parties (or by industry-
specific consortia) can be checked against provider behaviours defined independently by each 
of the involved parties. Then, each provider can check her internal orchestration designs 
against her provider behaviours. Also, pairs of behaviour interfaces describing the interactions 
between any pair of providers involved in a given choreography can be checked for 
conformance against each other. 

We have implemented a proof-of-concept tool that supports the relational operators defined in 
section 4 (see screenshot in Figure 14). The tool allows a designer to create a project to which 
designs from the four supported viewpoints can be added. For example, the screenshot shows 
a project containing a choreography design and a provider behaviour. When a project contains 
multiple designs, the tool allows the designer to check the relations between them. To do so, 
the designer can enter algebraic expressions similar to the ones presented in section 4. For 
example, the figure shows how a designer checks whether a provider behaviour is equivalent 
to part of a choreography. According to the tool, this is ‘true’. The tool can be downloaded 



from (Dijkman 2004), along with the example from the figure and an explanation of that 
example. 

 

Figure 14. A Screenshot of the Tool 

The tool also illustrates a concrete approach to Service-oriented Design based on the core 
model introduced in section 2, but using a more designer-oriented language than Petri nets. 
Specifically, the approach relies on a graphical notation called Interaction Systems Design 
Language (ISDL) originally intended for architecture description. ISDL is discussed in 
various papers (Quartel et al. 2002, Quartel 1998, Quartel et al. 1997) and a tutorial can be 
found at (Quartel n.d.). Motivating the use of ISDL as a language for service-oriented design 
is out of the scope of this paper. 

Currently, the tool uses a naïve algorithm for checking the relations between viewpoint 
designs and adopts a trace-based semantics. Specifically, all possible traces of the designs to 
be verified are generated and consistency is checked by comparing sets of traces. Trace-based 
semantics is known to be less expressive than a Petri net-based semantics with bi-simulation 
equivalence (Glabbeek 2001). At the same time, under suitably chosen restrictions, the 
complexity of verification of bisimulation equivalence in Petri nets can be manageable and 
even considerably lower than the one of the naïve algorithm used in the tool. Specifically, bi-
similarity of Petri nets is decidable for situations in which at least one of the Petri nets is 
deterministic (up to bi-similarity) (Jančar 1994). Moreover, bi-similarity between two Petri 
nets is known to be decidable in polynomial time for bounded Petri nets (Alvarez et al. 1991). 
Therefore, if we restrict our behavioural semantics to deterministic bounded Petri nets, a 
reasonably efficient algorithm can be constructed to verify the conformance between the 
viewpoints. We feel that the imposed restriction is reasonable as current service description 
languages are based on constructs that can be mapped to bounded Petri-nets, which Martens 
(2003) shows for BPEL4WS. 

An obvious direction for future work is thus to investigate the application to our approach, of 
consistency checking algorithms based on bi-simulation equivalence or other related notions 
of behavioural equivalence. In particular, adapting some of the results from the area of 
inheritance of (Petri net-based) workflows (Aalst 2002) is an appealing alternative. 
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